Example 5: The revenue function for a firm’s product is
r = 20q — 0.4¢°
and the firm’s production function is

qg = 5V 3¢ — 14.

*) Monthly revenue, r, is measured in $1000s.

)
*) Monthly output, ¢, is measured in 1000s of units.
*)

Labor input, ¢, is measured in $1000s per week

(
(
(
(

*) Current labor input: ¢y = 10.

Firm is considering the hiring of a widget polisher who will cost (wages,
benefits and tazes) $500 a week. How will this affect their bottom line?

(*) Current output and revenue: gy = 51/30 — 14 = 20 (20000 units)
and 75 = 20-20 — 0.4-20% = 240 ($240000)




(i) An increase of $500/week in labor cost means A¢ = 0.5

(ii) Approximate change in output:
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(iii) Approximate change in revenue:




Conclusion: Monthly revenue will increase by about $3750 while monthly
costs will increase by $2000 = $500 x 4.

(*) Bottom line: Firm’s profit will increase by about $1750.

Where 1s the chain rule?
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Differentiating logarithm functions.

To differentiate y = In x, we return to the definition of the derivative...

d . In(x+h)—Inzx
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and simplify, using algebraic properties of Inz...
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and use the continuity of Inx...
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What next?




Remember the special limat...

lim (1 +uw)/* =e...
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do a little renaming...
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observe that h — 0 implies u — 0...
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(because f(x) =a /" is continuous)
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Returning to — (In x)...
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Example 1.

product rule
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Example 2.

chain rule
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Example 3. Differentiate y = In (52?).
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We can use the chain rule again: ¢y = — - 10x = =tz
52 bx?

Or we can simplify and then differentiate:

y = In (5x2) —In5+Inz?=1In5+2Inz
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Observation: If b > 0 and b # 1, then log, z = 27 5o
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Example 4. Find the equation of the tangent line to the graph

x4+ 2 —1
y = log, Az — 3

at the point where x = 1.
(*) The line passes through the point (1,y(1)) = (1,1log5(2)) = (1, 1).
(*) The slope is %’(1), and again we simplify before we differentiate:
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(*) The equation of the tangent line is

2
=1—-—(x—1).
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Figure 1: Graph of y = log, <%) and its tangent line at (1,1)




Next up (on Monday):

Logarithmic differentiation:

The chain rule tells us that
d 1
— In(f(z)) = —
(f(x)) @)

I () —
a @) =
This is called the logarithmic derivative of f(x).
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