AMS 11A

Study Guide 7

Solutions

- **1.** Find the critical points and critical values of the following functions.
 - **a.** $f(x) = 3x^2 4x + 2$ Critical point:

$$f'(x) = 0 \implies 6x - 4 = 0 \implies x_1 = \frac{2}{3}$$

Critical value $f(x_1) = f(2/3) = 2/3$.

b. $g(t) = 2t^3 - 9t^2 - 24t + 7$

Critical points:

$$g'(t) = 0 \implies 6t^2 - 18t - 24 = 0 \implies 6(t - 4)(t + 1) = 0 \implies \begin{cases} t_1 = 4 \\ t_2 = -1 \end{cases}$$

Critical values: $g(t_1) = g(4) = -105$ and $g(t_2) = g(-1) = 20$. c. $y = 5xe^{-0.125x^2}$

Critical point(s):

$$y' = 0 \implies 5e^{-0.125x^2} - 1.25x^2e^{-0.125x^2} = 0 \implies e^{-0.125x^2}(5 - 1.25x^2) = 0$$

Recall that $e^u > 0$ for all u, and therefore

$$y' = 0 \implies 5 - 1.25x^2 = 0 \implies x^2 = 4 \implies \begin{cases} x_1 = 2\\ x_2 = -2 \end{cases}$$

Critical values: $y(x_1) = y(2) = 10e^{-0.5}$ (≈ 6.0653) and $y(x_2) = y(-2) = -10e^{-0.5}$. 9n

$$\mathbf{d.} \ w = \frac{5u}{4+5u} - u$$

Critical points:

$$\frac{dw}{du} = 0 \implies \frac{36}{(4+5u)^2} - 1 = 0 \implies 36 = (4+5u)^2 \implies 4+5u = \pm 6 \implies \begin{cases} u_1 = 0.4 \\ u_2 = -2 \end{cases}$$

Critical values: $w(u_1) = w(0.4) = 0.2$ and $w(u_2) = w(-2) = 5$

- 2. Use the *first derivative test* to classify the critical values that you found in 1c. and 1d. as relative minimum values, relative maximum values or neither.
- 1c. We check the **sign** of the derivative at a point to the left of $x_2 = -2$, at a point between the two critical points and to the right of $x_2 = 2$. First:

$$y'(-3) = e^{-9/8}(5 - 11.25) = -6.25e^{-9/8} < 0$$
 and $y'(0) = 5 > 0$

so y is decreasing as we approach $x_2 = -2$ from the left and y is increasing as we leave $x_2 = -2$ on the right, and therefore $y(-2) = -10e^{-0.5}$ is a relative minimum value. Next:

$$y'(0) = 5 > 0$$
 and $y'(2) = e^{-9/8}(5 - 11.25) = -6.25e^{-9/8} < 0$

so y is increasing as we approach $x_{=}2$ from the left and y is decreasing as we leave $x_{1} = 2$ on the right, and therefore $y(2) = 10e^{-0.5}$ is a relative maximum value.

1d. Same process here...

$$\left. \frac{dw}{du} \right|_{u=-3} = \frac{36}{121} - 1 < 0 \text{ and } \left. \frac{dw}{du} \right|_{u=0} = 8 > 0$$

so w is decreasing as we approach $u_2 = -2$ from the left and w is increasing as we leave $u_2 = -2$ on the right, and therefore w(-2) = 5 is a relative minimum value. Next:

$$\frac{dw}{du}\Big|_{u=0} = 8 > 0 \text{ and } \frac{dw}{du}\Big|_{u=1} = \frac{36}{81} - 1 < 0$$

so w is increasing as we approach $u_1 = 0.4$ from the left and w is decreasing as we leave $u_1 = 0.4$ on the right, and therefore w(0.4) = 0.2 is a relative maximum value.

- **3.** Use the *second derivative test* to classify the critical values that you found in 1a. and 1.b. as relative minimum values, relative maximum values or neither.
- 1a. f''(x) = 6, so f''(2/3) = 6 > 0 and f(2/3) = 2/3 is a relative minimum value.
- 1b. g''(t) = 12t 18, so g''(4) = 30 > 0 which means that g(4) = -105 is a local minimum value. Likewise, g''(-1) = -30 < 0, so g(-1) = 20 is a local maximum value.